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A Linkage Strategy for Detection of Human Quantitative-Trait Loci.
I. Generalized Relative Risk Ratios and Power of Sib Pairs with
Extreme Trait Values
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Summary authors (Carey and Williamson 1991; Fulker et al. 1991;
Eaves and Meyer 1994; Risch and Zhang 1995; Gu et

We generalize the concept of the relative risk ratio (l) al. 1996). As demonstrated by Risch and Zhang (1995),
to the case of quantitative traits, to take into account the gain in power is dramatic when extremely discordant
the various trait outcomes of a relative pair. Formulas (ED) sib pairs are used. In a previous article (Gu et al.
are derived to express the expected proportion of genes 1996), we discussed some practical issues of applying
shared identical by descent by a sib pair, in terms of the Risch and Zhang’s method, especially the difficulty of
generalized l’s for sib pairs (lS), parent-offspring pairs finding ED pairs, and suggested that it may be more cost
(lO), and monozygotic twins (lM) and in terms of the effective to combine both the ED pairs and the extremely
recombination fraction, with the assumption of no resid- concordant (EC) sib pairs that are available in the sam-
ual correlations. If residual correlations are nonzero pling pool used for identifying the ED pairs. In the cur-
among relative pairs, we assume that they are the same rent series of two articles (also see Gu and Rao 1997
among sib pairs, parent-offspring pairs, and monozy- [in this issue]), we aim to answer the question of when
gotic twins, and we employ a slightly different definition and how to combine ED and EC sib pairs, by generaliz-
for the generalized l so that the same set of formulas ing the concept of l to quantitative traits.
still hold. The power (or, the sample size necessary) to When there is no residual correlation between rela-
detect quantitative-trait loci (QTLs) by use of extreme tives, in addition to that due to the trait locus under
sib pairs (ESPs) is shown to be a function of the three consideration, simple formulas for expected identical
generalized l’s. Since lM can be derived by use of values (identity)-by-descent (IBD) proportions are derived in
of lS and lO, estimates of the latter two l’s will suffice terms of the generalized l’s and the recombination frac-
for the analysis of power and the necessary sample sizes tion (u). When there is nonzero residual correlation be-
of ESPs, for a QTL linkage study. tween relatives, we assume that the residual correlations

among sib pairs, parent-offspring pairs, and monozy-
gotic twins are the same, and we obtain the same set ofIntroduction
formulas by modifying slightly the definition of l. Using

For dichotomous qualitative traits, Risch (1990a) intro- estimated values of the l’s, we can calculate either the
duced the concept of the relative risk ratio (l) and dem- power of extreme sib pairs (ESPs) for given numbers of
onstrated how it determined the statistical power to de- ED and/or EC sib pairs or the necessary sample sizes of
tect linkage by use of affected relative pairs (including ED/EC pairs for a preset power. The optimization of
sib pairs). Many important human traits (such as blood combining ED and EC pairs is dealt with in the subse-
pressure and body-mass index) are, however, of a quan- quent paper of this series (Gu and Rao 1997).
titative nature, and the power to detect linkage to quan- We begin with a definition of lR(h,l), the generalized
titative-trait loci (QTLs) is rather low in unselected sam- l for a type-R relative pair with trait outcomes (h,l),
ples. The enhanced power of sib pairs with extreme and develop its relationship with the expected IBD pro-
phenotypic values has been discussed recently by several portions for sib pairs. The effect of u is incorporated by

the expression of the probability of IBD at the linked
trait locus, conditioned on IBD at the marker locus.
Basic properties of lR(h,l) are explored by the studyReceived June 5, 1996; accepted for publication April 17, 1997.
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201Gu and Rao: Generalized Relative Risk Ratios and QTL Study Design I

(for parent-offspring pairs). Both Risch and Zhang’s ED offspring pairs, and ‘‘M’’ for monozygotic twins. More-
over, for the power calculations in this paper, we assumesib-pair test and our combined ED and EC sib-pair test,

called ‘‘the EDAC test’’ (Gu et al. 1996), are discussed. that the selective sampling method through probands at
high risk is used, whereby one member of each sib pairNote that with this methodology, the estimation of

power (or sample sizes) depends on the values of the comes from the highest decile.
l’s, not directly on the underlying model. The estimated

Generalized l’s and IBD Sharingpower and necessary sample sizes of ESPs are given for
For a qualitative trait, James (1971) introduced a sim-a grid of (lO,lS).

ple relationship between the relative recurrence risk KR

and the population prevalence K. Risch (1990a) simpli-Methods
fied the formula by introducing the concept of relative

Let us consider the following model for a quantitative risk ratio, lR Å KR/K:
phenotype X:

lR Å 1 / 1
K2 Cov(X1,X2) , (2)X Å m / g / e, (1)

where m is the overall phenotypic mean and the major
where Cov(X1,X2) is the covariance between the traitgenetic effect g is generated by a biallelic locus, while
values (0 or 1) of a relative pair. From this formula,the residual term e, which is uncorrelated with g, encom-
he explored the relationship between different types ofpasses any multifactorial inheritance and pure error. The
relative pairs and used it for predicting genetic models.alleles A1 (the so-called risk allele) and A2 at the major
Furthermore, the expected IBD proportions of variouslocus are assumed to have frequencies p and q Å 1 0 p,
types of relatives were expressed in terms of lS and lO,respectively, with the genotypic effects given by
the l’s for sib pairs and parent-offspring pairs, and thus
power calculations for sib-pair tests became tractable.

For continuous quantitative traits, equation (2) is not
g Å

0a for A2A2

d for A1A2

a for A1A1

. defined readily, but, as we show here, the concept of
l can be generalized easily. Although the relationship
between the l’s for different types of relatives is less
clear, the role of l in determining the power of sib-pair

For simplicity, we assume that e has variance s2
e Å 1. tests still holds and becomes more useful in light of the

The e is allowed to be correlated among relatives, but increasing need for combining different types of ESPs
we make the assumption that sib pairs, parent-offspring (Gu et al. 1996).
pairs, and monozygotic twins all share the same residual

r Å 0.—Let us first consider the case when there is
correlation r. Relaxation of this assumption will be dis- no residual correlation. Using the notation described
cussed later. Without loss of generality, we assume that earlier, we define the generalized l for a type-R relative
high trait values are associated with an increased risk pair as a function of the trait outcomes of the relative
of disease and divide the trait values into 10 consecutive pair:
subintervals with equal probabilities (or deciles), unless
otherwise noted. Sib pairs with one member sampled
from each extreme decile are called ‘‘ED sib pairs’’ and lR(h,l) Å KR(lÉh)

K(l)
, (3)

(10, 1) is used to denote their trait values. Sib pairs with
both members from the same extreme decile are called
‘‘EC sib pairs.’’ If both siblings have trait values in the where K(l) is the probability that a randomly selected

person has a trait value in the lth decile, and KR(lÉh) ishighest decile, the sib pair is called an ‘‘extremely high–
concordant (HC) sib pair,’’ and, similarly, if both sib- the probability that a person has a trait value in the lth

decile given that the trait value of his/her type-R relativelings have trait values in the lowest decile, the sib pair
is called an ‘‘extremely low–concordant (LC) sib pair.’’ is in the hth decile. That is, K(l) Å P(X2 √ l) Å P(l) and

KR(lÉh) Å P(X2 √ lÉX1 √ h) å PR(lÉh), where X1 andTheir trait values are denoted by (10,10) and (1,1), re-
spectively. Generally, we use (h,l)R to denote a pair of X2 are the trait values of the relative pair. Thus, if we

divide the trait values into 10 deciles with equal proba-relatives of type R, with its members’ trait values in the
hth and lth deciles. P[(h,l)R], also denoted as PR(h,l) bility, then KR(lÉh) Å 10 1 P[(h,l)R] (since P(X1 √ h)

Å .1 for any h Å 1, . . . , 10). Depending on our interest,when there is no ambiguity, is the probability of this
trait outcome. The subscript ‘‘R’’ denotes the type of a lower or a higher trait value may be associated with

the risk of some disease, but we still use the term ‘‘riskrelative. We will use ‘‘S’’ for sib pairs, ‘‘O’’ for parent-
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Table 1ratio,’’ for apparent reasons. Notice that l now is a
function of the relative pair’s trait outcomes and that it

Conditional Probability of pt , Given pmalso depends (implicitly) on the way the trait values are
divided into intervals. CONDITIONAL PROBABILITY FOR pt Å a

Theoretically, if the model parameters are known, the
pm 0 1 2generalized l’s can be calculated easily. We derive the

following formula in terms of Di , the probability that a
0 C2 2C(1 0 C) (1 0 C)2

sib pair has outcome (h,l) and shares i alleles IBD: Di 1 C(1 0 C) C2 / (1 0 C)2 C(1 0 C)Å P[(h,l)S and p Å i ]. Given a particular genetic model, 2 (1 0 C)2 2C(1 0 C) C2

Di may be calculated as a sum of the products of condi-
a C Å u2 / (1 0 u)2.tional probabilities of the trait outcomes, given the geno-

types of a sib pair, and of probabilities of the genotypes
conditioned on IBD at the trait locus (e.g., see Risch and
Zhang 1995).

Since r Å 0, it is easy to see that P[(h,l)SÉp Å 0] Å P(p Å 0)
P(h)P(l)

P(h)PR(lÉh)Å P(h)P(l); thus we have

Å P(p Å 0)
P(l)

PR(lÉh)
lS(h,l) Å PS(h,l)

P(h)P(l)
Å D0 / D1 / D2

4D0

. (4)
Å P(p Å 0)/lR(h,l) . (8)

Similarly, for the same reason, we have PO(h,l) Similarly,Å P[(h,l)SÉp Å 1] and PM(h,l) Å P[(h,l)SÉp Å 2)]. There-
fore,

ZR,1(h,l) Å P(p Å 1)
lO(h,l)
lR(h,l)

, (9)

lO(h,l) Å KO(lÉh)
K(l)

Å PO(h,l)
P(h)P(l)

(5) and

Å P[(h,l)SÉp Å 1]
P[(h,l)SÉp Å 0]

Å D1/1/2

D0/1/4
Å D1

2D0

,
ZR,2(h,l) Å P(p Å 2)

lM(h,l)
lR(h,l)

. (10)

and To accommodate the effect of recombination (uú 0),
let C Å u2 / (1 0 u)2. We apply the conditional IBD
probability for the linked trait locus, given IBD at the

lM(h,l) Å D2

D0

. (6) marker locus, as displayed in table 1 (Suarez et al. 1978;
Risch 1990b) where pt and pm denote the IBDs at the
trait locus and at the marker locus, respectively. There-

Then, it is easy to verify that
fore, we have

lM(h,l) Å 4lS(h,l) 0 2lO(h,l) 0 1 (7)
ZS,0(h,l) Å P(pm Å 0)

P[(h,l)S]
P[(h,l)SÉpm Å 0]

holds for all valid h and l.
Let us now express the expected IBD sharing between Å P(pm Å 0)

P(h)PS(lÉh)
∑
2

jÅ0

P[(h,l)SÉpt Å j ]
relative pairs in terms of the generalized l’s. First, let us
consider the case in which the marker is completely 1 P(pt Å jÉpm Å 0)
linked to the trait locus (uÅ 0). We denote the probabil-
ity that a type-R relative pair shares i alleles IBD, given Å P(pm Å 0)

P(h)PS(lÉh)
[P(h)P(l)C2 / 2C(1 0C)the trait outcome (h,l)R, by ZR,i . We have

1 P(h)PO(lÉh) / (1 0C)2P(h)PM(lÉh)]
ZR,0(h,l) Å P[p Å 0É(h,l)R]

Å 1
4 �C2 1

lS(h,l)
/ 2C(1 0C)

lO(h,l)
lS(h,l)Å P(p Å 0)

P[(h,l)RÉp Å 0]
PR(h,l)
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/ (1 0C)2 lM(h,l)
lS(h,l)� lR(h,l) Å KR(lÉh)

Pr(lÉh)
. (15)

Å 1
4
0 1

4 � 1
lS(h,l)� (2C0 1){[lS(h,l) 0 1] (11) Note that Pr(lÉh) Å P(l) when r Å 0. It is easy to check

that all the formulas derived previously still hold in this
case simply by the replacement of P(l) with Pr(lÉh). In/ 2(1 0C)[lS(h,l) 0 lO(h,l)]} .
particular, those formulas that calculate the values for
lR(h,l), when the parameters of the underlying geneticSimilarly,
models are given, still hold.

In practice, the estimation of Pr(lÉh) may be a far
ZS,1 Å 1

2
0 1

2
(2C 0 1)2 1

lS(h,l)
(12)

more complicated task than the estimation of the simple
population prevalence P(l). However, as far as this arti-
cle is concerned, we are interested only in the estimation1 [lS(h,l) 0 lO(h,l)] ,
of the probabilities of a sib pair sharing one or two
genes IBD, given various trait outcomes, which in turnand
will determine the power of the linkage test, as we will
show below. Therefore, from equations (9) and (10),

ZS,2 Å 1
4
/ 1

4
(2C 0 1)

1
lS(h,l)

{[lS(h,l) 0 1]

(13)
only the estimation of the ratios of the l’s is necessary
when u Å 0. If u ú 0 is small, it is still true, by use of
the approximation in equation (13). These ratios—/ 2C[lS(h,l) 0 lO(h,l)]} .
more specifically, lO(h,l)/lS(h,l) and lM(h,l)/lS(h,l)—
can be written as ratios of the recurrence risks KS(lÉh),When u is small, C É 1; then, C(lS 0 1) É lS 0 1, and
KO(lÉh), and KM(lÉh). This means that estimation ofone may approximate equation (13) by the following:
KS(lÉh), KO(lÉh), and KM(lÉh) would be practically suf-
ficient for power and sample-size calculations. Hence,

ZS,2 É 1
4
/ 1

4
(2C 0 1)

1
lS(h,l)

{C[lS(h,l) 0 1] the direct estimation of Pr(lÉh) could be avoided.

Power and Sample Size for Sib-Pair Tests/ 2C[lS(h,l) 0 lO(h,l)]}
For sib pairs with any type of phenotypic configura-

tion (h,l), the above results express the expected IBDÅ 1
4
/ 1

4
C(2C 0 1)

1
lS(h,l) sharing in terms of two parameters, lS(h,l) and

lO(h,l). Thus, we may calculate the power of a sib-pair1 [3lS(h,l) 0 2lO(h,l) 0 1]
test, for a given number of sib pairs, or estimate the
number of various types of sib pairs necessary to achieveÅ 1

4
/ 1

4
C(2C 0 1)

1
lS(h,l) (14) a desired statistical power.

Let us first consider Risch and Zhang’s (1995) ESP1 [lM(h,l) 0 lS(h,l)] .
test XU : XU Å (1/n1) �n1

iÅ1 p1i, where pki is IBD of the ith
sib pair, with k sibs having extremely high trait values

r ú 0.—If r ú 0, we assume that sib pairs, parent-
(the other sibs having extremely low trait values) and

offspring pairs, and monozygotic twins all share the
where nk is the number of such sib pairs. The power of

same r, as mentioned previously. Under this assumption,
n sib pairs of type ED (i.e., [10,1]), for example, can be

we see, for example, that the probability of a parent-
calculated by use of lS(10,1) and lO(10,1), by F(Z10b),offspring pair having some particular trait outcome is
where F is the cumulative distribution function of the

equal to that of a sib pair having the same trait outcome,
standard normal and where

given that they share exactly one allele IBD at the trait
locus. And the probability that any type of relative pair
has trait outcome (h,l)R, given that the relatives share Z10bÅ É2lS(10,1) 0 lO(10,1) 0 1É

√
n / ZalS(10, 1)

√
2√

[lO(10,1) / 2][2lS(10,1) 0 lO(10,1)] 0 1
.

no allele IBD at the trait locus, can be written as
P[(h,l)RÉpÅ 0] Å P(h)Pr(lÉh), where Pr(lÉh) (‘‘r’’ denotes

(16)residual) is the probability that a person’s trait value is in
the lth decile, given that a person who only is residually
correlated with him/her has a trait value in the hth decile. The necessary sample size of ED sib pairs for a desired

power of F(Z10b) Å 1 0 b can be estimated via the l’s,In view of this derivation, we modify the definition of
the generalized l as by
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Figure 1 Distribution of lS over sib-pair trait outcomes (h,l), under different genetic models. a, Additive models with p Å .2. b, Dominant
models with p Å .4. All models have heritability equal to .3, whereas the top row has r Å 0 and the bottom row has r Å .4.

n1 Å �Z10b

√
[lO(10,1) / 2][2lS(10,1) 0 lO(10,1)] 0 1 0 ZalS(10,1)

√
2

2lS(10,1) 0 lO(10,1) 0 1 �2

. / n0

n2 / n0
�4lS(1,1) 0 lO(1,1) 0 1

lS(1,1) �
(17)

0 4lS(10,1) 0 lO(10,1) 0 1
lS(10,1)

,
When there is substantial linkage information carried

by the EC sib pairs in the sample, we have proposed to
f0 Å [lO(1,1) / 2][2lS(1,1) 0 lO(1,1) 0 1]

8lS(1,1)2 ,combine them (the HC or LC sib pairs or both) with
the ED sib pairs, using the EDAC test of Gu et al. (1996).
For instance, if one would combine all the available HC f1 Å [lO(10,1) / 2][2lS(10,1) 0 lO(10,1) 0 1]

8lS(10,1)2 ,
(i.e., [10,10]) and LC (i.e., [1,1]) pairs with the ED pairs,
the EDAC statistic would be

f2 Å [lO(10,10) / 2][2lS(10,10) 0 lO(10,10) 0 1]
8lS(10,10)2 ,

TEDAC Å 1
n2 / n0

�∑
n2

iÅ1

p2i / ∑
n0

iÅ1

p0i� 0 1
n1

∑
n1

iÅ1

p1i .
and

The power of a sample with n2 HC pairs, n1 ED pairs,
s�2 Å 1

2(n2 / n0)
� n2

n2 / n0

f2 / n0

n2 / n0

f0� / 1
2n1

f1 .
and n0 LC pairs is given by F(Z10b), with

To achieve a desired power 1 0 b, the necessary sample
sizes for each type of ESP (HC, ED, and LC) are derived
by the solving of equation (18) after the ratios betweenZ10b Å

t� 0
√

n1 / n2 / n0

2n1(n2 / n0)
(Za /2)

s�
, (18)

the different types of sib pairs to be used in the analysis
are determined. An optimization procedure may be used

where F is the cumulative distribution function of the to obtain the ratios for the most cost-effective design
standard normal and where (see Gu and Rao 1997).

Results
t� Å n2

n2 / n0
�4lS(10,10) 0 lO(10,10) 0 1

lS(10,10) � The distributions of lS for sib pairs with various trait
outcomes, under different additive and dominant mod-
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Table 2els, are displayed in figure 1. Positive r’s generally de-
crease the value of lS and, with regard to the detection

Patterns of Expected Values of t for Sib Pairs, with Corresponding
of linkage, result in better power for ED pairs and less Ratios of l’s, Corresponding to Different Genetic Models
power for HC pairs. This is consistent with the power

ED PAIRS HC PAIRSanalysis done by Risch and Zhang (1995) and that done
by Gu et al. (1996). The values of lS for LC sib pairs

p lO/lS lM/lS t lO/lS lM/lS tare close to 1 for both additive models, which indicates
that the LC pairs have little power in the detection of Additive Model with r Å 0
genes with additive effects. As a comparison, under the

.20 .969 .466 .359 .978 1.496 .618dominant models (fig. 1b), we see much larger values of

.40 .943 .467 .352 .971 1.417 .597lS for LC pairs and smaller values for HC pairs. This

.60 .943 .467 .352 .980 1.315 .574implies that, under some dominant models, LC sib pairs

.80 .969 .466 .359 .992 1.187 .545
may add more power.

From equations (8)–(14), we see that the power of Additive Model with r Å .4
ESP tests actually depends on the ratios lO/lS and

.20 .866 .194 .265 .981 1.407 .597lM/lS. In table 2, we present the ratios for various addi-

.40 .811 .201 .253 .980 1.334 .578tive and dominant models, together with t, the expected

.60 .811 .201 .253 .986 1.261 .562
IBD sharing for sib pairs (i.e., 1/2ZS,1 / ZS,2). We see .80 .866 .194 .265 .994 1.167 .540
that, for example, as r changes from 0 to .4, t for ED

Dominant Model with r Å 0pairs moves further away from 1/2 (the value expected
under the null hypothesis of no linkage), whereas t for

.10 1.014 .454 .367 .986 1.544 .633HC pairs moves closer to 1/2. For traditional l’s (defined

.30 1.049 .390 .360 .976 1.295 .568
only for affected sib pairs that are, in many cases, close .50 1.086 .400 .371 .977 1.158 .534
to what we call ‘‘HC pairs,’’ in this article), one would .70 1.103 .515 .405 .987 1.060 .512
have lO £ lS (i.e., lO/lS £ 1), and their values would

Dominant Model with r Å .4be nearly equal under the dominant models (James
1971; Risch 1990a). The same relationship holds for

.10 1.021 .163 .296 .988 1.469 .614
HC pairs, by use of the generalized l’s, but it is not .30 1.068 .161 .307 .979 1.263 .561
surprising that it no longer holds for other types of sib .50 1.122 .147 .317 .979 1.150 .532

.70 1.180 .152 .333 .987 1.060 .512pairs (see fig. 2). For ED sib pairs, one might expect the
inequality to be in the opposite direction, but we see in
figure 2b that this is not always true either.

Figure 2 Typical values of lO/lS, plotted as functions of heritability, for HC [(10,10)] sib pairs (a) and for ED [(10,1)] sib pairs (b),
when r Å 0 is assumed. The graphs show the results under two models, an additive model with p Å .2 and a dominant model with p Å .4.
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Figure 3 Values of lS for HC (top) and ED (bottom) sib pairs, as functions of heritability, for additive (a) and dominant (b) models. r
Å .4 is assumed for all the models displayed. p Å .2, .4, .6, or .8. Under the additive models, since lS, for ED sib pairs, for p Å .6 and .8 takes
the same values as p Å .4 and .2, respectively, these values are not plotted. Smaller values of lS for ED pairs and larger values of lS for HC
pairs both indicate better power to detect linkage, for the respective ESPs.

In figure 3, we demonstrate how the values of lS for compared with those for HC pairs, especially under the
additive models, showing that the ED design is less sensi-ED and HC sib pairs change with the underlying genetic

models, by plotting lS against the heritability. We fix r tive to the underlying gene frequencies.
Remember that all the calculations done so far areÅ .4 and let the genotypic values vary to get the right

value for heritability. The values of the gene frequencies based on the division of trait values into 10 deciles (with
equal probabilities). Different types of division certainlyalso vary (p Å .2, .4, .6, or .8). Note that under an

additive model, ED sib pairs have the same lS, for fre- will yield different values for the l’s. As an example, let
us divide the trait values into three intervals, with thequencies p and 1 0 p. Also, under recessive models

with gene frequency p, lS is the same as that under the middle interval having a fixed proportion of 40% and
an arbitrary probability assigned to the lower interval.dominant model with frequency 1 0 p, and with the

positions of LC and HC sib pairs reversed; hence, we Using the (upper) threshold T of the lower interval as
the indicator of the division, we plot the values of lS asskip displaying here the results for recessive models.

When p is high, the curves of lS for HC pairs are fairly functions of T, in figure 4, for r Å 0 and r Å .4. As the
threshold increases, lS for HC pairs also increases (i.e.,flat, indicating that the sole HC design is not efficient.

The curves of lS for ED pairs are closer to each other, becomes more powerful) under both the additive and
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Figure 4 Values of lS plotted against T, for HC sib pairs ( top ) and ED sib pairs (bottom ), under additive models with p Å .1 (a ) and
dominant models with p Å .4 (b ). T is the upper threshold of the lower interval, which results from a trichotomization of trait values, with
the middle interval having a fixed probability of .4. T is allowed to vary within the range of .005–.595. For each type of model, both cases
of r Å 0 and r Å .4 are plotted in the same graph, for comparison.

the dominant models, whereas lS for ED pairs will de- from the authors and which will do the calculations for
any values of the l’s, at any level of significance. Wecrease or increase (i.e., become more or less powerful),

depending on the model. Also, compared with ED sib have used the significance level of .001 in tables 5 and
6. The power and sample sizes at points where the com-pairs, the values of lS for HC pairs are less sensitive to

the presence of positive r’s, when the threshold defining bination (lS,lO) is apparently invalid for any genetic
model are not shown in the tables, even though they areextreme-trait values varies. This suggests that, to achieve

an optimum design, one must choose carefully the mathematically computable.
We see that for ED sib pairs (lS õ 1.0), for a fixedthresholds defining the extreme trait values, as well as

the types of ESPs used for analysis. lO, the smaller the values of lS , the more powerful the
ED sib pairs; for a fixed lS , the closer lO is to 1, theIn tables 3 and 4, we give the power on a rough grid

of (0 õ lS, lO £ 1) for 50 ED sib pairs and (1 £ lS, more powerful are the ED sib pairs. For HC sib pairs
(lS ¢ 1.0), for a fixed lO, the larger the values of lS,lO £ 3) for 50 HC pairs. The necessary sample sizes for

a power of 80% on the same grids of (lS,lO) are shown the more powerful the HC sib pairs; again, for a fixed
lS , the closer lO is to 1, the more powerful are thein tables 5 and 6. All the calculations were done by use

of a computer program (LAMBDA), which is available HC sib pairs. We interpret the pattern as follows: Since
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Table 3

Power of 50 ED Sib Pairs, at a Significance Level of .001, Calculated on a Grid
of [0 õ lS(10,1), lO(10,1) £ 1.0]

POWER, FOR lO Å a

lS .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.30 1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . .

.40 .97 1.00 1.00 . . . . . . . . . . . . . . . . . . . . .

.50 .10 .42 .85 1.00 1.00 . . . . . . . . . . . . . . .

.60 . . . .01 .06 .26 .67 .97 1.00 . . . . . . . . .

.70 . . . . . . . . . .00 .03 .15 .47 .87 1.00 . . .

.80 . . . . . . . . . . . . . . . .00 .02 .09 .31 .71

.90 . . . . . . . . . . . . . . . . . . . . . .00 .01 .05
1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . .00

a An ellipsis indicates that the (lS,lO) combination is not valid for a genetic model.

smaller values of lS indicate a higher chance that an ED ful than other types of sib pairs, for the detection of
QTLs, there are a lot of practical issues that need to besib pair shares zero genes IBD and since larger values

of lS indicate a higher chance that an HC sib pair shares addressed before one can fully take advantage of this
fact. In a previous article (Gu et al. 1996), we exploredtwo genes IBD, they both lead to more-powerful tests.
the benefits of combining ED and EC sib pairs, to com-When lO approaches 1, from equation (7) we see that
pensate for the fact that ED sib pairs alone are hard tovalues of lM increase for HC sib pairs and decrease for
find. This investigation takes that step further by theED sib pairs. In either case, the expected IBD sharing
provision of a method for the estimation of the necessaryfor the HC or the ED sib pairs moves further away from
ED or EC sample sizes, even when little information1/2 (the value expected under the null hypothesis of no
about the underlying genetic model is available, throughlinkage), resulting in more-powerful tests (also see ta-
the introduction and application of the generalized l’sble 2).
(the l method). The expected IBD sharing of a sib pair
is expressed in terms of lO(h,l), lS(h,l), and lM(h,l), theDiscussion
generalized l’s for parent-offspring pairs, sib pairs, and

Although sib pairs with EC phenotypes and, even monozygotic twins, respectively. By use of equation (7),
the expected IBD sharing can be expressed in terms ofmore so, sib pairs with ED phenotypes are more power-

Table 4

Power of 50 HC Sib Pairs, at a Significance Level of .001, Calculated on a Grid
of [1.0 £ lS(10,10), lO(10,10) õ 3.0]

POWER, FOR lO Å a

lS 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80

1.00 .00 . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.20 .24 .03 .00 . . . . . . . . . . . . . . . . . . . . .
1.40 .82 .48 .14 .01 .00 . . . . . . . . . . . . . . .
1.60 .98 .90 .67 .32 .07 .01 .00 . . . . . . . . .
1.80 1.00 .99 .95 .80 .52 .21 .04 .00 . . . . . .
2.00 1.00 1.00 1.00 .97 .89 .68 .39 .13 .02 .00
2.20 1.00 1.00 1.00 1.00 .98 .93 .80 .55 .27 .08
2.40 1.00 1.00 1.00 1.00 1.00 .99 .96 .87 .69 .43
2.60 1.00 1.00 1.00 1.00 1.00 1.00 .99 .98 .92 .79
2.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .98 .95

a An ellipsis indicates that the (lS,lO) combination is not valid for a genetic model.
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Table 5

Sample size of ED Sib Pairs Needed for 80% Power, at a Significance Level of .001, Calculated on a
Grid of [0 õ lS(10,1), lO(10,1) £ 1.0]

SAMPLE SIZE FOR ED SIB PAIRS, FOR lO Å a

lS .10 .20 .30 .40 .50 .60 .70 .80 .90 1.00

.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

.30 8 . . . . . . . . . . . . . . . . . . . . . . . . . . .

.40 60 30 17 . . . . . . . . . . . . . . . . . . . . .

.50 887 212 89 47 27 . . . . . . . . . . . . . . .

.60 . . . –b –c 294 124 66 38 . . . . . . . . .

.70 . . . . . . . . . –b –c 386 164 88 52 . . .

.80 . . . . . . . . . . . . . . . –b –c 491 210 112

.90 . . . . . . . . . . . . . . . . . . . . . –b –c 607
1.00 . . . . . . . . . . . . . . . . . . . . . . . . . . . –b

a An ellipsis indicates that the (lS,lO) combination is not valid for a genetic model.
b ú99,999.
c ú999.

lO(h,l) and lS(h,l) only. The values of lO(h,l) and lS(h,l) no residual correlations among the relative pairs. When
there is residual correlation, we simply assume that thecan be estimated by use of the current data set or by use

of results from previous studies. The estimation involves residual correlations among relatives are all the same
and derive the same formulas for expected IBD sharing,only the recurrence risks of parent-offspring and sib

pairs and the population prevalence of various trait out- using l’s. Two observations are worth noting. First, di-
rect estimation of l’s then becomes more difficult, sincecomes. More specifically, for example, it does not re-

quire the genotyping of parent-offspring pairs. The esti- the probability Pr(lÉh) is difficult to estimate in practice.
However, one may avoid this difficulty by using ratiosmation of recurrence risks certainly will depend on the

sampling method used in a study, a topic on which we of recurrence risks, which are relatively easy to estimate
from the data. Second, if the residual correlations amongdid not elaborate in this paper.

The generalization of the concept of l in the setting different types of relatives are not identical, the concept
of l’s still can be generalized, by use of so-called l fac-of quantitative traits is straightforward when there are

Table 6

Sample Size of HC Sib Pairs Needed for 80% Power, at a Significance Level of .001, Calculated on a
Grid of [1.0 £ lS(10,10), lO(10,10) õ 3.0]

SAMPLE SIZE FOR HC SIB PAIRS, FOR lO Å a

lS 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80

1.00 –b . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.20 284 –c –b . . . . . . . . . . . . . . . . . . . . .
1.40 97 170 375 –c –b . . . . . . . . . . . . . . .
1.60 56 80 123 216 477 –c –b . . . . . . . . .
1.80 39 51 69 99 153 267 591 –c . . . . . .
2.00 30 38 48 62 84 120 185 324 716 –c

2.20 25 30 37 45 57 74 100 143 220 386
2.40 22 25 30 36 43 53 67 87 117 167
2.60 19 22 25 30 35 41 50 62 78 101
2.80 17 20 22 26 29 34 40 48 58 71

a An ellipsis indicates that the (lS,lO) combination is not valid for a genetic model.
b ú99,999.
c ú999.
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